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Abstract. The continuous fragmentation equation is generalized to include the number of
fragmentations as a variable. The fragmentation rateα(n, x) and the probability for the
production of progeny sizey from parent sizex, Bn(x → y), are both made dependent on the
numbern of fragmentations experienced by the fragment during its history. An interpretation
wheren is the number of impacts experienced by the fragment is possible by also allowing a
single progeny equalling the parent in size. Solutions for the cases whereα(n) does not depend
on x are studied. The theory is adapted to model clustering in fragmentation-generated cellular
structures.

1. Introduction

The linear fragmentation equation for the size distributionf (x, t) of fragments with
maximum size 1 is usually written

∂

∂t
Nf (x) = N

∫ 1

x

dy α(y)f (y)B(y → x)κ(y)−Nα(x)f (x) (1)

where N(t) is the total number of fragments,α(x, t) is the fragmentation rate, and
B(y → x; t) dx is the probability for a fragmentation event with parent sizey to produce
progeny sizex. The expectation ofB(y → x; t) is y/κ(y, t) whereκ(y, t) is the average
number of progeny for parent sizey. For q-ary fragmentationκ = q. Equation (1) and its
asymptotic form, the scaling equation, have been extensively studied forα(x) ∼ xρ , where
ρ is any real number, and solutions for variousB(y → x) constructed [2–8, 11–14, 16].
These solutions can be used to describe fragmentation processes whereN(t) is large so that
the continuous formalism can be assumed to apply, that is, either in cases whereN(0) is
large or asymptotically for larget in cases whereN(0) is small. If the number of fragments
is small discrete and combinatorial approaches are required [1, 4, 9, 10].

Here, the fragmentation numbern is defined as the number of fragmentation events
experienced by a fragment and it is introduced as a variable to the continuous fragmentation
formalism. Rather than an additional parameter, the fragmentation number is a conjugate
description to that referring to size. If att = 0 the value ofn for all fragments in the initial
configuration is known, the state(n, x) is unambiguously definable for the fragments for
all subsequent times. IfN(t) is large then by monitoring for a short time [t, t + 1t ] all
n-fragments, allx-fragments, or all(n, x)-fragments the fragmentation ratesα(n, t), α(x, t)
andα(n, x, t) can be determined. The process can be described in terms of any of these.
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However, the(n, x)-description includes the other two. In a fragmentation event thex-
fragments producey-fragments,y < x, while the n-fragments always produce(n + 1)-
fragments so that(n, x)-fragments produce(n + 1, y)-fragments. Thus, the complete
continuous description of the process can be based on the fragmentation rateα(n, x, t)

and the progeny distributionBn(x → y; t) which are all allowed to depend onn, x and t .
A possible physical motivation to consider the(n, x)-state is to describe processes during

which the fragments grow weaker or stronger. The first could follow from the loosening of
the composition of the fragments owing to repeated fragmentations, and the latter from the
toughening of the fragments by impacts, or because most faults initiating the fragmentation
are already used up. This is more obvious by allowing

Bn(x → y; t) = (1− ν(n, x, t))δ(x − y)+ ν(n, x, t)B∗n(x → y : t). (2)

Here n can be interpreted as the impact number (number of impacts experienced by a
fragment), in which caseα(n, x, t) is the impact rate andν(n, y, t) the probability for the
fragment of sizex and having sufferedn impacts to fragment in the next impact. This is close
to what actually happens in many forced fragmentation processes (grinding mills) and in
collision-driven fragmentation. By a suitable choice ofα(n, x, t) andν(n, y, t) it is possible,
for example, to describe processes where fragments that have suffered many impacts without
breaking will probably remain unbroken in further impacts, or where further fragmenting
ceases for small fragments. As the formalism does not change, the term fragmentation
number is used in the following but the possibility of the impact number interpretation is
kept in mind.

The introduction of the fragmentation number can be exemplified by studying (1) for
q-ary fragmentationκ = q in the special caseα = 1 andB(y → x) dx ≡ B(x/y)(dx/y),
whereB(z) dz is a probability distribution defined for 06 y 6 1 and with the expectation
1/q. The transform

F(s, t) =
∫ 1

0
dx xSf (x, t) D(s) =

∫ 1

0
dx xSB(x) (3)

reduces (1) to

∂

∂t
NF(s, t) = NF(s, t)(qD(s)− 1) (4)

whereF(0, t) = D(0) = 1 andq = 1/D(1). For an initial configuration att = 0 where
a large numberN0 of fragments follows distributionf0(x) with the transformF0(s) the
solution of (4) is

F(s, t) = F0(s)e
q(D(s)−1)t N(t) = N0e(q−1)t . (5)

The exponential inF(s, t) can be formally written as a series from which the solution of
(1) is obtained as

f (x, t) = e−qtf0(x)+ f0(x) ∗ e−qt
∞∑
n=1

n︷ ︸︸ ︷
[B ∗ B ∗ · · · ∗ B](x)

(qt)n

n!
(6)

where [f1 ∗ f2](x) = ∫ 1
x

dy f1(y)f2(x/y)(1/y). Expression (6) is the probability that a
fragment randomly chosen from theN fragments at timet has sizex. The first term
describes the probability that this is due to some fragment of the initial configuration that

has persisted. In the other termsf0(x)∗
n︷ ︸︸ ︷

[B ∗ · · ·B ∗ B](x) is the size distribution for particles
that have fragmentedn times and the remaining factor in these terms is the probability that
a fragment randomly chosen at timet has fragmentedn times. ForB(x) = axa−1 series (6)
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reduces to solutions given by Grady and Ziff [11]. The solution is asymptotically lognormal
[8] for any B(x). Thus, for the interpretation of (2), if the impact rate and the probability
ν(n, x) do not depend onx or n the fragment size distribution is asymptotically lognormal.

The solution (6) is a special case of

f (x, t) =
∞∑
n=0

e−qt (qt)n

n!
Bn(x) =

∞∑
n=0

k(n, t)Bn(x). (7)

HereBn(x) is the size distribution for fragments that have undergonen fragmentation
events, andk(n, t) is the distribution of fragmentation number (the number of fragmentation
events undergone). It is seen here thatk(n, t) is a Poisson distribution with parameterqt .
Together withN(t) from (5) it is a solution of the equation∂tNk(n, t) = qNk(n− 1, t)−
Nk(n, t). Thus, instead of seeking solutions in thex-description for differentB(y → x) it
is enough to solve this equation to obtain the solutions for all possibleBn(x). Forα(x) = 1
theBn(x) are in general given by

B0(x) = f0(x) Bn(x) =
∫ 1

x

dyBn−1(y)Bn−1(y → x). (8)

HereBn(y → x) is the transition probability for fragments with fragmentation numbern.
For anyBn, (7) is a distribution for a possible fragmentation process forα(x) = 1. However,
in the general case (8) it cannot be described by equation (1) as this requires thatBn(y → x)

does not depend onn. If this condition holds and moreoverB(y → x) dx ≡ B(x/y)(dx/y),
(6) is obtained.

It is not strictly known whetherf (x) is asymptotically lognormal in the general case
(8). The Poisson distribution approaches normal distribution ast grows large; this turns
the fragmentation numbern into a continuous variable and the probability forn being
small becomes vanishingly small. ForB(z → x) dx ≡ B(x/z)(dx/z), the Bn(x) is a
distribution of the product ofn identically distributed random variables. Owing to the
central limit theorem, it can be approximated by a lognormal distribution wheren appears
as a parameter. Integration of these lognormals over the normal produces a distribution
that can be shown to be asymptotically lognormal. As the conditions of the central limit
theorem can be much relieved so that the lognormality ofBn(x) still holds, it is probable
that the lognormal asymptotics is a very general property of constant rate processes.

2. Fragmentation equation including fragmentation number

In general all of the componentsα,B and κ can depend on the fragmentation numbern,
fragment sizex, and timet . The number of fragments with fragmentation numbern and
sizex is given by

µ(n, x, t) = N(t)k(n, t)Bn(x, t) (9)

whereN(t) is the total number of fragments,k(n, t) is the fragmentation number distribution
andBn(x, t) is the size distribution for fragments with fragmentation numbern. In general
Bn cannot be obtained iteratively through (8) as in the caseα = 1. Divided byN(t), (9) is
the distribution of the random vector(Nf ,X), whereNf is the fragmentation number and
X is the size:µ(n, x)dx/N = Prob(Nf = n andx 6 X < x + dx). The equation forµ is
formulated as

∂µ(n, x)

∂t
=
∫ 1

x

dy α(n− 1, y)µ(n− 1, y)Bn−1(y → x)κ(n− 1, y)− α(n, x)µ(n, x). (10)
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Here α(n, y, t) is the fragmentation rate andBn(y → x; t) is the transition probability
for (n, y)-fragments. The expectation ofBn(y → x; t) is y/κ(n, y, t) and for q-ary
fragmentationκ = q. If a solution (9) of (10) is known the following are obtained:

N(t) =
∫ 1

0
dx

∞∑
n=−0

µ(n, x, t) (11)

f (x, t) = N(t)−1
∞∑
n=0

µ(n, x, t) =
∞∑
n=0

k(n, t)Bn(x, t) (12)

k(n, t) = N(t)−1
∫ 1

0
dx µ(n, x, t) =

∫ 1

0
dx k(n, t)Bn(x, t) (13)

Bn(x, t) = µ(n, x, t)

N(t)k(n, t)
(14)

kx(n, t) = µ(n, x, t)

N(t)f (x, t)
. (15)

Here (11) is the total number of fragments, (12) is the fragment size distribution, (13) is
the fragmentation number distribution, (14) is the fragment size distribution conditioned on
fragmentation numbern, and (15) is the fragmentation number distribution conditioned on
fragment sizex. If the componentsα andB of (10) do not depend onn, summation over all
n gives the ordinary fragmentation equation (1). Ifα andκ do not depend onx integration
gives the fragmentation number equation

∂N(t)k(n, t)

∂t
= κ(n− 1)α(n− 1)N(t)k(n− 1, t)− α(n)N(t)k(n, t) (16)

in which case, provided thatBn(y → x) are time-independent,Bn are given by (8).

3. Solutions

3.1. Series solutions

Equation (10) is an iterative first-order differential equation forµ(n, x, t) and in principle
completely integrable even when all components of the equation are time dependent.
Starting fromN0 (n = 0, x = 1)-fragments only the second term on the right counts
and

µ(0, x, t) = N0δ(1− x) exp

{
−
∫ 1

0
dt α(0, 1, t)

}
(17)

is the number(n = 0, x = 1)-fragments persisting at timet . This solution is inserted into
equation (10) forµ(1, x, t) which can then be integrated, and the procedure is iterated for
all µ(n, x, t). In practice the cases which can be carried through are usually more directly
obtainable by other methods. Solutions for alln with α(n, x) depending both onn and
x are generally unknown. However, for cases wheren is limited manageable solutions
are feasible. In many forced fragmentation processes a small number of fragmentations is
sufficient to attain the desired degree of diminution.
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3.2. Fragmentation number distribution derived from a fragment size distribution

If the solutionf (x, t) of (1) for any q-ary fragmentation process(κ = q) is known, the
distributionsk(n, t) andBn(x, t) pertaining to the process can be derived. Defining

S(p, x, t) =
∞∑
n=0

pnk(n, t)Bn(x, t) (18)

the following equation is obtained by multiplying (10) bypn and summing overn:

∂NS(p, x, t)

∂t
= Npq

∫ 1

x

dy α(y)B(y → x)S(p, y, t)− α(x)S(p, x, t). (19)

In comparison with (1) it is seen thatS(p, x, t) can be obtained fromf (x, t) by substituting
pq to every instance ofq. The fragmentation number distribution is then derivable as

k(n, t)Bn(x, t) = (∂nS(p, x, t)/∂pn)p=0 k(n, t) =
∫ 1

0
dx k(n, t)Bn(x, t) (20)

from whichBn(x, t) are also obtained.
For a special caseα(x) = xρ , B(z → x) dx ≡ B(x/z)(dx/z), transform (3) with

the kernelxρs reduces (1) to a differential–difference equation∂1NF(s, t) = NF(s +
1, t)(qD(s)− 1).

The solution can formally be written as a series. IfDn(s, t) is the transform ofBn(x, t),
and

S(p, s, t) =
∫ 1

0
dx xρsS(p, x, t) =

∞∑
0

pnk(n, t)Dn(s, t) (21)

S(p, s, t) is obtained fromF(s, t) by substitutingpq to every instance ofq and

k(n, t)Dn(s, t) = ∂nS(p, s, t)

∂pn
|p=0 k(n, t) = k(n, t)Dn(0, t) (22)

which then giveDn(s, t). As an example, restricting us further toB(x) = 1, the series
solution of the differential–difference equation is recognized as

NF(s, t) = M(s − (q − 1)/ρ, s + 1/ρ,−t)
N(t) = N(t)F (0, t) = M(−1/ρ, 1/ρ,−t)

whereM is a confluent hypergeometric function andq = 2. The inverse, or solutionf (x, t),
can be found in [11]. Replacingq with 2p, NS(p, s, t) = M(s − (2p − 1)/ρ, s + 1/ρ, t)
and from (22)

k(n, t) = N(t)−1∂npM((2p − 1)ρ, 1/ρ, t)|p=0. (23)

The integral representation ofM can be used to derive a representation fork(n) at least
whenρ = 1.

3.3. Solving the fragmentation number equation

For the initial conditionsk(n, 0) = k0(n) andN(0) = N0 the k(n, t) andN(t) are obtained
from (16) by solving forN(t)k(n, t) and normalizing to 1. However, it is seen that for any
k0(n) the solution of (16) can be written as follows

N(t)k(n, t) =
n∑

m=0

N0k0(m)Nm(t)km(n, t) (24)
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whereNm(t)km(n, t) (n = m,m+ 1, . . .) is the solution of (16) for the initial condition of
a singlem-fragment,Nm(0)km(n, 0) = δmn. Defining

Nm(t)km(n, t) = e−α(n)t κ(m)κ(m+ 1) . . . κ(n− 1)
α(m)α(m+ 1) . . . α(n− 1)

β(m)β(m+ 1) . . . β(n)

×Nm(t)k∗m(n, t) n > m

Nm(t)km(m, t) = e−α(m)t Nm(t)k
∗
m(m, t) = 1

Nm(t)km(n, t) = 0 n < m

(25)

whereβ(n) is arbitrary, (16) yields

∂Nm(t)k
∗
m(n, t)

∂t
= β(n)eα(n)t−α(n−1)tNm(t)k

∗
m(n− 1, t). (26)

It is seen that the solution of (26) gives solution (16) for all possible functionsκ(n). The
solution has the form

Nm(t)k
∗
m(n, t) = eα(n)t (cnne−α(n−1)t + cnn−1e−α(n−2)t + · · · + cnm+1e−α(m)t )+ cnm. (27)

This is substituted into (26) and the coefficients are solved. Written in terms of a
(n−m+ 1)× (n−m) matrix and the shorthandβ(n)(α(n)− α(k))−1 = 1n

k , this gives

cm
cnm+1
cnm+2
...

cnn−2
cnn−1
cnn


=



−1n
n−1 −1n

m −1n
m+1 . . . −1n

n−3 −1n
n−2

0 1n
m 0 . . . 0 0

0 0 1n
m+1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1n
n−3 0

0 0 0 . . . 0 1n
n−2

1n
n−1 0 0 . . . 0 0


×



cn−1
m

cn−1
m+1

cn−1
m+2
...

cn−1
n−2

cn−1
n−1


(28)

which is then iterated fromcmm = 1. The factorβ(n) can be suitably chosen to simplify the
expressions.

3.4. Fragment size distributions derivable from a fragmentation number distribution

The fragment size distributionf (x, t) can be approached from a known solutionk(n, t) of
(16) in two ways. As for any time-independentBn(x → y) theBn(x) are given by (8) the
correspondingf (x, t) can be constructed as series (12). IfBn(x → y) does not depend on
n this distribution is then a solution of (1) with the rate

α(x, t) =
∞∑
n=0

α(n)kx(n, t) = 1

f (x, t)

∞∑
n=0

α(n)k(n, t)Bn(x). (29)

Thus it is, in principle, possible to construct endlessly new solutions of the fragmentation
equation (1) using this procedure; in practice only a few series (12) have a simple closed
form.

Any solution k(n, t) also provides in a more direct manner a solution of the ordinary
fragmentation equation (1) for cases where the progeny fragments are of the same size.
For q-ary fragmentation(κ = q), B(x) = δ(x − 1/q), and starting from(n = 0, x = 1)-
fragments, fragmentation numbern corresponds to size(1/q)n and Prob(X = (1/q)n) =
Prob(Nf = n). As α(n) = α(ln(1/q)n/ ln(1/q)), for each solutionk(n, t) there corresponds
a solutionf (x, t) of the fragmentation equation (1) withB(x) = δ(x − 1/q) and α(x)
obtained by substituting ln(x)/ ln(1/q) for n in α(n). However,κ(x) may also depend on
x (or, equivalently, onn) so that the progeny fragments are of equal size but the number of
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progeny may change. Thenn(x) should be solved fromx(n) = (κ(0)κ(1) . . . κ(n− 1))−1.
If this can be done,κ(x) is obtained by substitutingn(x) to κ(n), and B(y → x) =
δ(x − y/κ(n(y))) is a progeny distribution dependent on parent sizey. The equivalence
also works of course the other way round. Thus it is seen that the solutions of (1) for
B(x) = δ(x − 1/q) and α(x) = xρ, ρ any real number, can be obtained by solving the
fragmentation number equation (16) for rateα(n) = exp(an), a any real number. It is,
however, seen from (27) and (28) that these solutions are very complicated.

3.5. Linear dependence on fragmentation number

For α(n) = n + a, a > 0, andq-ary fragmentation(κ = q) the fragmentation number
equation

∂Nk(n, t)

∂t
= qN(t)(n+ a − 1)k(n− 1, t)−N(t)(n+ a)k(n, t) (30)

reduces with the substitutionsk(n, t) = e−(n+a)t qna(a+1) . . . (n+ a−1)k∗(n, t),et = τ to

∂N(τ)k∗(n, τ )
∂τ

= N(τ)k∗(n− 1, τ ). (31)

For the initial conditionNk∗(0, 1) = N0, Nk∗(n, 1) = 0 for n > 0, the solution is
N(τ)k∗(n, τ ) = N0(τ−1)n/n!. Thus for the initial condition of the numberN0 of fragments
with fragmentation number zero,

N(t)k(n) = N0e−ata(a + 1) . . . (n+ a − 1)
qn

n!
(1− e−t )n (32)

from which, definingp = 1− q + qe−t ,

k(n, t) = paa(a + 1) . . . (n+ a − 1)
1

n!
(1− p)n N(t) = N0p

−ae−at . (33)

Thus,k(n, t) is a negative binomial distribution with parametersa andp. The geometric
distribution is obtained fora = 1. Asκ > 1, thus also in cases (2) wheren is taken to be the
impact number, the process reaches in a finite timet∞ = ln(κ/κ − 1) a stage wherep = 0
and an infinite number of infinitesimal fragments is created. This corresponds to ‘shattering’
found for ordinary fragmentation equation solutions whenα(x) ∼ xρ, ρ < 0 [2, 3, 11, 12].
It is easily seen that the solution with initial conditionδnm is km(n, t) = k(n−m, t; a+m),
n = m,m + 1, . . . , wherek(n, t; a + m) is solution (33) with parametersa + m and p.
From these any solution (24) can be constructed.

The fragment size distributions (12) derivable from (33) are studied here for the initial
situation of (n = 0, x = 1)-fragments,k(n, 0) = δn0, f (x,0) = δ(x − 1), and for
B(z → x) dx ≡ B(x/z)(dx/z) whereB(x) has the transformD(s), (3). The transform
of Bn(x), (8), isD(s)n and the transform off (x, t) is obtained by insertingk(n, t) from
(33) into (12) as

F(s, t) = pa

(1− (1− p)D(s))a . (34)

This gives the moment off (x, t) of any ordern for s = n. ForB(x) = 1 (uniform progeny
distribution),Bn(x) = (1/(n − 1)!) lnn−1(1/x) and the series (12) for the fragment size
distribution can be expressed in terms of a confluent hypergeometric functionM as

f (x, t) = paδ(x − 1)+ a(1− p)paM(a + 1, 2, (1− p) ln(1/x)). (35)

For a = 1 this reduces to

f (x, t) = pδ(x − 1)+ (1− p)px−(1−p). (36)
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The fragment size distribution (36) is a decreasing power function with a time-dependent
exponent. It approaches∼ x−1 as t → t∞. The appearance of power laws is generally
understood as one universal feature of the fragmentation processes. It can be derived
using fractal fragmentation models where a certain portion of the smallest fragments are
disintegrated further while the rest remain intact hereafter [15]. It also follows from
more complicated discrete and combinatorial approaches [1, 9, 10]. In certain continuous
fragmentation processes it is found asymptotically and for a small fragment regime [2, 3, 12].
Result (36) shows that the power law can also be a proper solution for the continuous
fragmentation equation where the exponent can be a function of time. The rate for which
(36) is the solution of (1) can be calculated by (29). In the asymptotical regime, where the
delta function details can be neglected, this rate isα(x) = 2− (1−p) ln x. Thus, a solution
of (1) with logarithmically behaving rate became constructed.

From solution (33) a solution of the fragmentation equation (1) forq-ary fragmentation
into equal piecesB(x) = δ(x − 1/q) is obtained by the equivalence Prob(X = (1/q)n) =
Prob(Nf = n). Thus α(x) = ln(x)/ ln(1/q) + a. For the geometric distributions case
a = 1, k(n, t) = p(1− p)n, the number of fragments with sizex is then proportional to
x ln(1−p)/ ln(1/κ). The exponent decreases from infinity att = 0 to zero in the finite timet∞.
Thus the power law is found again but with a positive exponent. As the production of small
fragments is in its minimum whenB(x) is a delta function, shattering is expected whenever
α(x) ∼ ln(x).

3.6. Inversely proportional case

For α(n) = 1/(n+ a), a > 0, it is chosenβ(n) = α(n) so that

1k
n = β(n)

(
1

n+ a −
1

k + a
)−1

= −k + a
n− k . (37)

Iterating (28) for the initial conditionNk∗(0, 1) = N0, Nk∗(n, 1) = 0 for n > 0, the solution
emerges as

N(t)k∗(n, t) = N0
1

n!

n∑
k=0

(
n

k

)
(−1)ke−

k
(n+a)(n−k+a) t (n− k + a)n−1 (38)

and from (25) forq-ary fragmentation(κ = q)

N(t)k(n, t) = N0q
ne−

1
n+a t (n+ a) 1

n!

n∑
k=0

(
n

k

)
(−1)ke−

k
(n+a)(n−k+a) t (n− k + a)n−1

= N0q
n(n+ a) 1

n!

n∑
k=0

(
n

k

)
(−1)n−ke−

1
k+a t (k + a)n−1. (39)

For any time instantt it is found that negative valuesN(t)k(n, t) start to appear after a
certain value ofn. As this cannot be, the support ofN(t)k(n, t) is finite for all t . Summation
over the support givesN(t), andk(n, t) obtained thereby sums to unity over the support.
The finite support is in a way a phenomenon opposite to shattering.

Solution (39) immediately gives a more general one. For the rateα(n) = (an+b)/(cn+
d) the choice

β(n) = b/c − da/c2

n+ d/c τ = (b/c − da/c2)t (40)
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produces an equation fork∗(n, τ ) with solutions obtained from (38) by changinga to d/c
and t to τ . This gives the solution

N(t)k(n, t) = N0
qne−at/c

(bc − ad)n b(a + b) . . . (a(n− 1)+ b)

×cn+ d
n!

n∑
k=0

(
n

k

)
(−1)n−ke−

(b−da/c)
ck+d t (ck + d)n−1. (41)

The rateα(n) is increasing, decreasing or constant depending on whetherab − bc is
positive, negative or zero; in the third case the Poisson distribution appearing in (7) is
obtained as a limit. Solutions (33) and (39) are obtained by a proper choice of constants
a, b, c andd. Through Prob(X = (1/q)n) = Prob(Nf = n) the solution corresponds to a
B(x) = δ(x − 1/q) solution of (1) with the rateα(x) = a ln(x)+b ln(1/q)

c ln(x)+d ln(1/q) . This rate can be
chosen to be finite for all 06 x 6 1, having then the valueb/d for fragment size 1 and
valuea/c for small fragment limit.

3.7. Progeny production dependent onn

From any solutionk(n, t) for q-ary fragmentation, especially from (41), an indefinite number
of other solutions corresponding to different choices ofκ(n) can be generated by replacing
qn in the solution byκ(0)κ(1) . . . κ(n− 1). Allowing the possibility of interpretingn as an
impact number it is chosen

κ(n) = 1− ν(n)+ ν(n)κ∗(n) (42)

whereν(n) is the probability of fragmenting in thenth impact andκ∗(n) the number of
progeny produced in this case.

As an example the caseα(n) = 1, v constant andκ∗(n) = n + 2 is studied so that
κ(n) = ν(n + 2+ (1− ν)/ν). Thus the number of progeny increases linearly with the
impact number. Forq-ary fragmentation the solution forN0 (n = 0)-fragments att = 0 is
Nk(n) = N0e−t (qt)n/n! and by the replacement ofqn the following solution is obtained

N(t)k(n, t) = N0e−t
(νt)n

n!

(
2+ 1− ν

ν

)(
3+ 1− ν

ν

)
. . .

(
n− 1+ 2+ 1− ν

ν

)
. (43)

Comparison with (32) reveals thatk(n, t) is a negative binomial distribution with the
parametersp = 1− νt and a = 2− (1− ν)/ν. Thus the process reaches the shattering
phase at timet = 1/ν. In this case shattering does not follow from the increasing rate but
from the increasing number of progeny. Solutionsf (x, t) can again be constructed, and
for ν = 1 andB(x) = 1 the power law solution (36) is found. The limit distribution is thus
not lognormal although the rate is constant.

4. Cluster size distributions in cellular structures

A large number of boxes is assumed so that the rate for objects to be put in a box follows
a dependencyαc(n) on the numbern of objects already in the box; the subscriptc is added
to avoid confusion with the fragmentation number. The equation governing the distribution
of numbers of objects in the boxes is

∂kc(n, t)

∂t
= αc(n− 1)kc(n− 1, t)− αc(n)kc(n, t) (44)

or the fragmentation number equation with constantN andκ = 1.
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The box process can also be interpreted to describe fragmentation. Att = 0 an initial
situation is assumed where, say, a unit square has been fragmented in an arbitrary fashion so
that the pieces keep their positions. The initial situation defines the boxes of the process; the
fragment boundaries can be imagined to become permanently marked. The fragmentation
continues in a binary fashion, generating a certain cellular structure. The new fragmentation
lines are objects in the boxes. Their number isn∗ so thatn = n∗ + 1 is the number of
fragments in the box (including the box itself). If the rateαc(n∗) for fragmentation events
to occur in a cell depends on the numbern∗ + 1 of fragments in a cell, the process is
governed by (44) with the initial conditionkc(n∗, 0) = δn∗0. The boxes can be interpreted
as clusters andn as cluster size; this gives a model where the cluster size increase rate
is αc(n∗). For increasingαc(n∗) the clusters attract fragmentation events, for decreasing
αc(n

∗) repel them.
This has an important application for the process where the fragmentation rateα(x, n),

in its usual interpretation, does not depend onx or n. This produces size distributions (7)
which are asymptotically lognormal at least ifB(z→ x) dx ≡ B(x/z)(dx/z). As then each
fragment in a cluster is fragmented with equal rate with unit magnitude, the overall rate
αc(n

∗) of fragmentations to occur in the cluster isn∗ + 1= n. The distributionkc(n∗, t) of
the number of fragmentation lines in a cluster is governed by equation (44) and the solution
is given by (33). As the average number of fragments per cluster isNC(t) = et , and
n∗ = n − 1, the probability of havingn fragments in a cluster is geometrically distributed
and obtained from (33) with parametersa = 1, κ = 1 andp = (1/NC),

kc(n, t) = 1

NC(t)

(
1− 1

NC(t)

)n−1

n = 1, 2, . . . . (45)

Thus for any partition defining the cluster boundaries att = 0, the constant rate
fragmentation process leads to the cluster size distribution (45) whereNC is the average
cluster size.

From the properties of geometric distribution it follows that if we choose a minimum
size n0 for a cluster, they are distributed askc(n|n > n0) = kc(n − n0 + 1|n > 1). The
size of sums ofm clusters has negative binomial distribution (33) witha = m, κ = 1 and
p = 1/NC . Further, assume that at timet1 = ln(NC1) the existing clusters are defined as
first-order clusters and all existing fragments are taken to define the boundaries of second-
order clusters. The first-order cluster is thus composed of the second-order clusters. Then at
time t2 = ln(NC2) the distribution for first-order clusters is geometric with parameter 1/NC1

and for second-order clusters geometric with parameter 1/NC2. The combined clusters,
understood as containing all fragments inside the first-order cluster boundaries, is geometric
with parameter 1/NC1NC2. In the limit of larget this hierarchy can be iterated indefinitely.

In [8] it was shown that the process with size-independent fragmentation rate produces
multivariate lognormal distributions and the correlations between neighbouring fragments
were given. This theory was formulated for the fragmentation of a unit line and the results
were not readily adaptable to other geometries, owing to the ambiguity of the neighbouring
concept. Result (45) can be considered as an adjoint way of attacking the problem, being
easily applicable to any geometry. From the constant fragmentation rate there is a relation
betweenα(x) andαc(n). Another such case isα(x) = x, or the spatial Poisson process,
but for other ratesα(x) the cluster size equation (44) is an approach independent of the
fragmentation equation (1). In the case where the cells in the initial partitioning att = 0
have the same size (44) can be understood as parametrized by the average size of the
fragments in the cluster.
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